Refine Your Search

Topic

Author

Search Results

Technical Paper

Non-Reacting and Reacting Flow Analysis in an Aero-Engine Gas Turbine Combustor Using CFD

2007-04-16
2007-01-0916
A gas turbine combustion system is an embodiment of all complexities that engineering equipment can have. The flow is three dimensional, swirling, turbulent, two phase and reacting. The design and development of combustors, until recent past, was an art than science. If one takes the route of development through experiments, it is quite time consuming and costly. Compared to the other two components viz., compressor and turbine, the combustion system is not yet completely amenable to mathematical analysis. A gas turbine combustor is both geometrically and fluid dynamically quite complex. The major challenge a combustion engineer faces is the space constraint. As the combustion chamber is sandwiched between compressor and turbine there is a limitation on the available space. The critical design aspect is in facing the aerodynamic challenges with minimum pressure drop. Accurate mathematical analysis of such a system is next to impossible.
Technical Paper

New Concept PFI-Atomizer Fueling System in a Small Single Cylinder SI Engine

2020-09-15
2020-01-2233
This paper presents results from tests using a fuel injection system which uses an ultrasonic atomizer paired with a port fuel injector (PFI). This concept was tested on a four stroke 200 cc spark-ignited two-wheeler engine. A throttle body with a PFI mounted on it was added to the air intake path of the engine, replacing the conventional carburetor. The ultrasonic disc was mounted in such a way, that the injected fuel from the PFI, falls directly on the face of the disc. The atomizer and the PFI were timed and synchronized appropriately using an Arduino® microcontroller, to promote atomization and vaporization of the fuel injected. The atomizer disc was excited using a high frequency oscillator circuit. The engine could be tested at various speeds and loads, corresponding to points which lie on the local drive duty cycle. The engine test results showed improvement in the engine exhaust emissions.
Technical Paper

NOx Reduction in SI Engine Exhaust Using Selective Catalytic Reduction Technique

1998-02-23
980935
Copper ion-exchanged X-zeolite with urea infusion was tested for nitrogen oxide (NOx)conversion efficiency in this study. Temperature datapoints were obtained to arrive at peak activation temperatures. Variation of the air/fuel ratio showed the widening of the λ-window(the range of air-fuel ratios over which the NOx conversion efficiency is considerable); a maximum of 62% NOx conversion efficiency was obtained in the lean-burn range. Effects of space velocity variations were also observed. In order to minimise the deactivation of zeolite caused by water, ammonium carbonate and ammonium sulphate were deposited on the copper ion-exchanged X-zeolite and the corresponding NOx conversion efficiencies measured. Ammonia slip (leakage of unreacted ammonia), a prospective pollution hazard, was observed to be more in case of urea infusion than ammonium salt deposition at higher temperatures.
Technical Paper

Investigation of Real-World Crash Using an Accident Reconstruction Methodology Employing Crash Test Data

2024-01-16
2024-26-0288
Automotive crash data analysis and reconstruction is vital for ensuring automotive safety. The objective of vehicle crash reconstruction is to determine the vehicle's motion before, during, and after the crash, as well as the impact on occupants in terms of injuries. Simulation approaches, such as PC CrashTM, have been developed to understand pre-crash and post-crash vehicle motion, rather than the crash phase behavior. Over the past few decades, crash phase simulations have utilized vehicle finite element models. While multibody simulation tools are suitable for crash simulations, they often require detailed crash test data to accurately capture vehicle behavior, which is not always readily available. This paper proposes a solution to this limitation by incorporating crash test data from databases, such as NHTSA, Global NCAP, consumer rating reports, and videos, along with a multibody-based approach, to conduct crash phase simulations.
Technical Paper

Influence of Particle Size of Graphite on Performance Properties of Friction Composites

2007-10-07
2007-01-3967
Non-Asbestos Organic (NAO) brake- material research has been significant in the last decade in an attempt to replace the conventional semi-metallic and asbestos based materials. Influence of ingredients in this multi-ingredient (generally 10-25 in different proportions) system on performance properties, however, is still not thoroughly researched area because of complexity involved and needs intensive efforts to understand this aspect. Graphite is one of the most important and almost inevitable ingredients in friction materials. A wide variety of graphite varying in origin, particle size, crystallinity, thermal conductivity etc. is used by the industry. An in-depth and systematic study on the influence of size of graphite on tribo-performance, however, is not available.
Technical Paper

In-Cylinder Air-Flow Characteristics Using Tomographic PIV at Different Engine Speeds, Intake Air Temperatures and Intake Valve Deactivation in a Single Cylinder Optical Research Engine

2016-02-01
2016-28-0001
Fuel-air mixing is the main parameter, which affects formation of NOx and PM during CI combustion. Hence better understanding of air-flow characteristics inside the combustion chamber of a diesel engine became very important. In this study, in-cylinder air-flow characteristics of four-valve diesel engine were investigated using time-resolved high-speed tomographic Particle Imaging Velocimetry (PIV). For visualization of air-flow pattern, fine graphite particles were used for flow seeding. To investigate the effect of different operating parameters, experiments were performed at different engine speeds (1200 rpm and 1500 rpm), intake air temperatures (room temperature and 50°C) and intake port configurations (swirl port, tangential port and combined port). Intake air temperature was controlled by a closed loop temperature controller and intake ports were deactivated by using a customized aluminum gasket.
Technical Paper

Hydrocarbon Modeling for Two-Stroke SI Engine

1994-03-01
940403
Hydrocarbon emissions due to short-circuiting of the fresh charge during scavenging process is a major source of pollution from the two-stroke spark ignition engines. This work presents a prediction scheme for analysis of hydrocarbon emission based on the material balance considerations. A generalized form of globular combustion equation has been used for general applicability of the scheme to any fuel or fuel blends. The influence of mixture quality, scavenging characteristics, residual contents and the delivery ratio are predicted. A good qualitative prediction has been established at all delivery ratios. The predictions are found quantitatively satisfactory in the higher delivery ratio range where the short-circuiting phase of the scavenging process is dominant.
Technical Paper

Extrapolation of Service Load Data

2009-05-13
2009-01-1619
Fatigue design has to account for the scatter of component geometry, material behavior and loading. Scatter of the first two variables is mainly due to manufacturing and material sourcing. Loading on the other hand depends decisively on operating conditions and customer usage. Loading is certainly most difficult to determine. Tests on proving ground or even long-term real time measurements are used to obtain actual load time histories. Because of the costs of measurements and safety measure, real-time measurements are used exceptionally to gain changes in the usage profile. In this paper, an attempt has been made to find the difference in the extrapolated data to the actual data. A comparison has been made between the actual road distance of 2000 km to the extrapolated data of 100 km, 500 km and 1000 km to 2000 km. The front Axle channel is taken for the study.
Technical Paper

Experimental and Numerical Study on Automotive Pleated Air Filters

2016-02-01
2016-28-0100
Nowadays, the automotive engines are downsizing, thus offering limited space for engine intake air filter media. This results in higher aerosol velocity through the filter media. At a higher velocity, the aerosol particles reenter into the fluid stream and thereafter penetrate through the filter media. This causes significant reduction in filtration efficiency. Here, an attempt is made to understand the particle penetration behavior of automotive engine intake air filter media. To establish the flow field, numerical simulations are carried out on a panel type pleated air filter with pleat height 26 mm, pleat pitch 4.5 mm and pleat angle 2.50 degree. A series of tests are conducted using ISO 12103 A2 fine dust on a flat cellulosic paper filter media at a range of velocities derived numerically. The methodology followed for modeling the fibrous media using finite volume commercial CFD code for analyzing the flow field is presented.
Technical Paper

Experimental Investigation on the Use of Water Diesel Emulsion with Oxygen Enriched Air in a DI Diesel Engine

2001-03-05
2001-01-0205
A single cylinder, direct injection diesel engine was run on water diesel emulsion at a constant speed of 1500 rpm under variable load conditions. Water to diesel ratio of 0.4 on the mass basis was used. Tests indicated a considerable reduction in smoke and NO levels. This was accompanied by an increase in brake thermal efficiency at high outputs. HC & CO levels, ignition delay and rate of pressure rise went up. The heat release rate in the premixed burn period was higher. When the oxygen concentration in the intake air was enhanced in steps up to 25% along with the use of water diesel emulsion, the brake thermal efficiency was improved and there was a further reduction in the smoke level. HC and CO levels also dropped. NO emission went up due to increased temperature and oxygen availability. An oxygen concentration of 24% by volume was optimal as the NO levels were near about base diesel values.
Technical Paper

Experimental Investigation of Multiple Injection Strategies on Combustion Stability, Performance and Emissions in a Methanol-Diesel Dual Fuel Non-Road Engine

2020-04-14
2020-01-0308
In this work methanol was port injected while diesel was injected using a common rail system in a single cylinder non-road CI engine. Experiments were conducted with single (SPI) and double (DPI - pilot and main) injection of the directly injected diesel at 75% load and at a constant speed of 1500 rpm. The effects of methanol to diesel energy share (MDES) and injection scheduling on combustion stability, efficiency and emissions were evaluated. Initially, in the SPI mode, the methanol to diesel Energy Share (MDES) was varied, while the injection timing of diesel was always fixed for best brake thermal efficiency (BTE). Increase in the MDES resulted in a reduction in NOx and smoke emissions because of the high latent heat of vaporization of methanol and the oxygen available. Enhanced premixed combustion led to a raise in brake thermal efficiency (BTE). Coefficient of variation of IMEP, peak pressure and BTE were deteriorated which limited the usable MDES to 43%.
Technical Paper

Experimental Investigation of Combustion Stability and Particle Emission from CNG/Diesel RCCI Engine

2020-04-14
2020-01-0810
This paper presents the experimental investigation of combustion stability and nano-particle emissions from the CNG-diesel RCCI engine. A modified automotive diesel engine is used to operate in RCCI combustion mode. An open ECU is used to control the low and high reactivity fuel injection events. The engine is tested for fixed engine speed and two different engine load conditions. The tests performed for various port-injected CNG masses and diesel injection timings, including single and double diesel injection strategy. Several consecutive engine cycles are recorded using in-cylinder combustion pressure measurement system. Statistical and return map techniques are used to investigate the combustion stability in the CNG-diesel RCCI engine. Differential mobility spectrometer is used for the measurement of particle number concentration and particle-size and number distribution. It is found that advanced diesel injection timing leading to higher cyclic combustion variations.
Technical Paper

Experimental Evaluation of Mahua based Biodiesel as Supplementary Diesel Fuel

2009-04-20
2009-01-0479
Biodiesel developed from non- edible seeds grown in the wasteland in India can be very effectively utilized in the existing diesel engines used for various applications. This paper presents the results of investigations carried out in studying the fuel properties of mahua oil methyl ester (MOME) and its blend with diesel from 20% to 80% by volume. These properties were found to be comparable to diesel and confirming to both the American and Indian standards. The performance of mahua biodiesel (MOME) and its blend with diesel in a Kirloskar DAF8 engine has been observed. The addition of MOME to diesel fuel has significantly reduced CO, UBHC and smoke emissions but increases the NOx emission slightly. The reductions in exhaust emissions could help in controlling air pollution. The results show that no significant power reduction in the engine operation when operated with blends of MOME and diesel fuel.
Technical Paper

Experimental Analysis of Force Recovery and Response Time using Strain Measurement Sensors in Stress Wave Force Balance

2024-06-01
2024-26-0451
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses.
Technical Paper

Evaluation of Lanthanum Based Diesel Oxidation Catalyst for Emission Reduction with and without Ceria Support

2016-02-01
2016-28-0023
Diesel particulates are mainly composed of elemental carbon (EC) and organic carbon (OC) with traces of metals, sulfates and ash content. Organic fraction of the particulate are considered responsible for its carcinogenic effects. Diesel oxidation catalyst (DOC) is an important after-treatment device for reduction of organic fraction of particulates. In this study, two non-noble metal based DOCs (with different configurations) were prepared and evaluated for their performance. Lanthanum based perovskite (LaMnO3) catalyst was used for the preparation of DOCs. One of the DOC was coated with support material ceria (5%, w/w), while the other was coated without any support material. Prepared DOCs were retrofitted in a four cylinder water cooled diesel engine. Various emission parameters such as particulate mass, particle number-size distribution, regulated and unregulated emissions, EC/OC etc., were measured and compared with the raw exhaust gas emissions from the prepared DOCs.
Technical Paper

Enhancement of Polycrystalline Silicon Solar Cell’s Efficiency through Electrospinning Coating Using Erbium Oxide

2024-02-23
2023-01-5163
The current research focuses on enhancing the performance of Si solar cells by using Er2O3 (Erbium Oxide) in cubic crystalline nature serves as an anti-reflection coating material. An anti-reflective coating aims to improve the Efficient Power Conversion (EPC) of polycrystalline silicon wafers solar cells (PSSC) utilised in solar roof panels of the automotive sector. It also exhibits superior light transmittance and least light reflectance, which eventually leads to the increase EPC. Erbium oxide helps to convert low energy photons into high energy photons. The incident photons, which lies on the solar cell, gradually losses its energy to travel in a denser medium and dissipate in the form of heat energy. In order to overcome the rate of reflection, current research aims in synthesis of erbium oxide nanosheets using electrospinning deposition technique for varying deposition timings such as 1, 1.5 and 2 hours.
Technical Paper

Effects of Compression Ratio and Water Vapor Induction on the Achievable Load Limits of a Light Duty Diesel Engine Operated in HCCI Mode

2019-04-02
2019-01-0962
Among the various Low Temperature Combustion (LTC) strategies, Homogeneous Charge Compression Ignition (HCCI) is most promising to achieve near zero oxides of nitrogen (NOx) and particulate matter emissions owing to higher degree of homogeneity and elimination of diffusion phase combustion. However, one of its major limitations include a very narrow operating load range owing to misfire at low loads and knocking at high loads. Implementing HCCI in small light duty air cooled diesel engines pose challenges to eliminate misfire and knocking problems owing to lower power output and air cooled operation, respectively. In the present work, experimental investigations are done in HCCI mode in one such light duty production diesel engine most widely used in agricultural water pumping applications. An external mixture preparation based diesel HCCI is implemented in the test engine by utilizing a high-pressure port fuel injection system, a fuel vaporizer and an air preheater.
Technical Paper

Effect of Fuel Injector Location and Nozzle-Hole Orientation on Mixture Formation in a GDI Engine: A CFD Analysis

2018-04-03
2018-01-0201
Gasoline direct injection (GDI) engines have gained popularity in the recent times because of lower fuel consumption and exhaust emissions compared to that of the conventional port fuel injection (PFI) engine. But, in these engines, the mixture formation plays an important role which affects combustion, performance and emission characteristics of the engine. The mixture formation, in turn, depends on many factors of which fuel injector location and orientation are most important parameters. Therefore, in this study, an attempt has been made to understand the effect of fuel injector location and nozzle-hole orientation on the mixture formation, performance and emission characteristics of a GDI engine. The mixture stratification inside the combustion chamber is characterized by a parameter called “stratification index” which is based on average equivalence ratio at different zones in the combustion chamber.
Technical Paper

Effect of Fuel Injection Parameters on Performance and Emission Characteristics in HCCI Engine - A CFD Study

2017-11-05
2017-32-0096
Today, homogenous charge compression ignition (HCCI) engines are becoming very popular because of their potential to reduce soot and nitric oxides (NOx) emissions simultaneously. But, their performance and emission characteristics are very much dependent upon fuel injection strategy and parameters. However, they also have many challenges viz., improper combustion phasing, high rate of pressure rise and narrow operating range. Therefore, addressing them is very essential before making them a commercial success. This study focuses on evaluating the effect of fuel injection strategy and parameters on the performance and emission characteristics of a HCCI engine by computational fluid dynamics (CFD) analysis. In this study, a four-stroke engine operating in the HCCI mode is considered and the CFD analysis is carried out by using the CONVERGE.
Technical Paper

Effect of Crystallographic Texture on Formability of Some FCC Metals and Alloys

2014-04-28
2014-28-0033
Formability of metals and alloys in general and aluminium alloys and steels in particular is of paramount importance in sheet metal forming in automobile industry. It is well understood that the evolution of preferred crystallographic orientation of crystallites or texture during prior thermo-mechanical processing of sheets plays an important role in determining formability. The formability of sheet is measured in terms of the Lankford parameter or the plastic strain ratio which is defined as the ratio of strain in width direction to that in the thickness direction (R = εw/εt). The variation of Lankford parameter with the rolling direction and standard and ΔR value is widely used in industry as a standard for estimating the formability of the rolled sheets.
X